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Abstract
In 2011 the Spanish Society of Medical Oncology (SEOM) and the Spanish Society of Pathology (SEAP) started a joint 
project to establish guidelines on biomarker testing in patients with advanced non-small-cell lung cancer (NSCLC) based 
on current evidence. As this field is constantly evolving, these guidelines have been updated, previously in 2012 and 2015 
and now in 2019. Current evidence suggests that the mandatory tests to conduct in all patients with advanced NSCLC are for 
EGFR and BRAF mutations, ALK and ROS1 rearrangements and PD-L1 expression. The growing need to study other emerg-
ing biomarkers has promoted the routine use of massive sequencing (next-generation sequencing, NGS). The coordination of 
every professional involved and the prioritisation of the most suitable tests and technologies for each case remains a challenge.
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Introduction

Non-small-cell lung cancer (NSCLC) is the solid tumour 
with the widest variety of potential therapeutic targets. It 
represents both a significant therapeutic opportunity and 
a challenge in predictive biomarkers determination. This 
third consensus statement update guidelines published in 
2012 and 2015 focused on predictive biomarker testing in 
patients with advanced NSCLC [1, 2]. The current docu-
ment is, supported by the Spanish Society of Pathology 
(SEAP) and the Spanish Society of Medical Oncology 
(SEOM).

Requirements for testing an optimal 
biological specimen

Obtaining enough and optimal quality specimen for bio-
markers in a particular patient should be a responsibility 
shared by the entire tumour board. In order to do this, 
it is important that the professionals involved have suf-
ficient knowledge of the advantages and disadvantages 
of each technology. It would be very helpful to establish 
automated and routine channels that could provide a solu-
tion when one or all tests fail, always taking into account 
adequate response times. When conducting molecular and 
immunohistochemical (IHC) tests, it is important to con-
sider the tumour percentage and the amount of tumour 
cells in the specimen, and also the pre-analytical variables 
[3]. Most of the samples obtained are small biopsy and/or 
cytology-type specimens (for example cell blocks, smears 
and liquid-based cytology). All of these sample types are 
suitable for IHC and molecular studies. The use of one 
or another will depend on the experience and capacity of 
each laboratory [4]. The first step for obtaining an ade-
quate specimen is the time between sample removal out 
of patient and its early fixation. This is why having seam-
less communication between the specialists involved is 
essential, as well as the availability of optimised diagnos-
tic techniques. The general requirements for a specimen 
to be optimal are conservation in 10% buffered formalin 
for 6–12 h for small biopsies and 24–48 h for surgical 
resections [5], and the presence of at least 50–100 viable 
cells for IHC studies or fluorescence in situ hybridisation 
(FISH). For real-time polymerase chain reaction (PCR) 
tests, a minimum 5% of tumour cells in NSCLCs are rec-
ommended [1, 6]. This percentage should be increased 
to 20–30% for direct next-generation sequencing (NGS) 
studies [7]. Direct smears that are air-dried or ethanol-
based fixation and liquid-based cytology are also suitable 
for FISH and molecular testing, but it is compulsory to 

perform appropriate validation studies in each laboratory 
following previously described recommendations [8–10]. 
The use of cytology specimens has not yet been vali-
dated to determine the expression of programmed death 
ligand-1 (PD-L1), despite the good correlation observed 
between cytology smears and cell blocks with biopsies 
[11]. Tissue-sparing protocols are recommended [12, 13]. 
For liquid biopsies, the two key technical factors to main-
tain optimal preservation of circulating cell-free DNA 
(cfDNA) are the storage and shipping conditions of the 
sample, and the elapsed time between specimen extraction 
and processing [14].

Which biomarkers should be tested in NSCLC 
and in which patients?

Table 1 summarises the essential biomarkers to be per-
formed on tissue- and/or cytology-type samples from 
advanced NSCLC patients, including the predictive altera-
tions and their testing methods.

EGFR

In Spain, epidermal growth factor receptor (EGFR) muta-
tions are present in 8–11% of advanced NSCLCs, and in 
16–18% of lung adenocarcinomas [15]. The most common 
mutations (85–90%) are tyrosine-kinase inhibitors (TKIs) 
sensitivity mutations such as deletions in exon 19 and point 
mutations in exon 21. Other uncommon mutations may 
be clinically relevant (i.e. exon 20 insertions are typically 
intrinsically resistant to EGFR-TKI inhibitors and exon 18 
alterations may be more sensitive to a specific TKI) [16]. 
EGFR-TKI inhibitor drugs are currently available, and 
administration as first-line therapy is standard in the main 
clinical guidelines [17], since these improve progression-
free survival (PFS) and quality of life when compared to 
the administration of platinum doublet chemotherapy [17]. 

Table 1  Essential biomarkers in NSCLC patients

EGFR epidermal growth factor receptor, FISH fluorescence in  situ 
hybridisation, H&E haematoxylin/eosin, IHC immunohistochemistry, 
NGS next-generation sequencing, NSCLC non-small-cell lung cancer, 
PCR polymerase chain reaction, PD-L1 programmed death ligand-1

Gene/protein Predictive alteration Methodology (in tissue)

EGFR Mutation PCR: sanger, real-time PCR and 
NGS

ALK Rearrangement IHC, FISH and NGS
ROS1 Rearrangement IHC (screening), FISH and NGS
BRAF V600 Mutation PCR: sanger, real-time PCR and 

NGS
PD-L1 Overexpression IHC
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Therefore, the recommendations from the last SEOM/SEAP 
consensus statements are still valid [1]:

• EGFR mutation tests in patients with advanced NSCLC 
should be conducted for all adenocarcinomas, non-squa-
mous non-small-cell histologies and squamous cell car-
cinomas in patients younger than 50 years of age and/or 
with no or low tobacco use (i.e. < 15 pack-years) (Fig. 1);

• The latest international consensus statements recommend 
that EGFR mutation tests should also be conducted on 
any small sample in which the tumour is poorly repre-
sented and in cases with an uncertain histological sub-
type;

• Lastly, an upfront liquid biopsy is not recommended if 
tissue is available. This procedure could be selected for 
determining the T790M mutation at disease progression.

Most patients with an EGFR mutation who receive first- 
or second-generation EGFR-TKIs will progress, and the 
most frequent molecular mechanism for acquired resist-
ance is EGFR T790M mutation, that occurs in 50–60% of 
cases [18]. In patients who present with an EGFR T790M 
mutation after progression on first-line treatment with a 
first- or second-generation EGFR-TKI, osimertinib has 
shown a higher PFS than a platinum/pemetrexed regimen 
(10.1 months vs. 4.4 months, respectively; HR 0.30) [19]. 
Based on this data, osimertinib is considered the treat-
ment of choice for these patients. Resistance mechanisms 
are less well known when osimertinib is used as first-line 

treatment [20, 21]. Determination of EGFR T790M in 
tumour tissue and in cfDNA are both valid alternatives. If 
EGFR T790M testing in plasma is negative, a new biopsy 
is recommended whenever possible.

Recommendations:

• All individual EGFR mutations with a frequency higher 
than 1% should be tested in tissue and/or cytology-type 
samples;

• The pathologist should examine all available specimens 
and use the one with better cellularity and tumour pro-
portion (biopsy or cytology) from the primary tumour or 
the metastases;

• High-sensitivity detection methods should be used, espe-
cially for EGFR T790M mutation testing (5% detection 
limit) [22]. The most recent recommendations from 
the American Society of Clinical Oncology/College of 
American Pathologists (ASCO/CAP) and the National 
Institute for Health and Care Excellence (NICE) suggest 
having two alternative methods to carry out a redundant 
molecular test, if necessary;

• When the objective is to select patients to receive a ther-
apy, IHC techniques (including EGFR mutation-specific 
antibodies) or copy number analysis should not be used;

• If sufficient expertise is available, and if the extended 
biomarker panel is to be tested, it is preferable to deter-
mine the EGFR mutation with targeted NGS panels;

• Cell blocks and other cytological preparations tested in 
laboratories with experience are also suitable specimens.

Fig. 1  Diagnostic algorithm for biomarker testing in patients with advanced NSCLC. AC adenocarcinoma, EGFR epidermal growth factor recep-
tor, PD-L1 programmed death ligand-1
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ALK

Anaplastic lymphoma kinase (ALK) rearrangements are pre-
sent in 2–5% of advanced NSCLCs [17]. Due to the clinical 
benefit provided by targeted therapies in this disease, it is 
key of identify all patients with this molecularly driven type 
of lung cancer [23].

Recommendations:

• The histological types eligible for ALK rearrangement 
tests include all adenocarcinomas, carcinomas with non-
squamous histological evidence and squamous tumours 
in patients younger than 50 years of age and/or with low 
or no tobacco use (i.e. < 15 pack-years) (Fig. 1) [24]. 
In some neuroendocrine carcinomas, ALK expression 
is intense but rearrangement cannot be detected in the 
sequencing test [25, 26]. The key methods for detect-
ing ALK gene rearrangement are IHC, FISH, PCR and 
NGS [22, 27]. Actually, IHC is an equivalent alterna-
tive to FISH. In this regard [17, 24] IHC is a quick and 
cost-effective method to determine low prevalence bio-
markers. Cell integrity can be assessed, and the method 
can be applied to different biological specimens, such 
as biopsies or cytological samples. Its use in cytology 
smears is quite controversial, although recent studies 
have proven the suitability of the method [28]. The most 
commonly used antibodies are D5F3 (Ventana ALK 
[D5F3] CDx Assay, Tucson, Arizona, USA) and 5A4 
(Novocastra, Leica Biosystems, Buffalo Grove, Illinois, 
USA), although the latter is not included in a diagnos-
tic kit [29]. The role of FISH as the optimal standard 
methodology is currently under discussion. The technical 
rationale is being assessed, as well as its interpretation of 
complex molecular mechanisms [30], although there are 
automated reader algorithms approved by the food and 
drug administration (FDA) that greatly increase reliabil-
ity [29]. When there is a positive IHC as manifested by 
strong granular cytoplasmic staining with either of the 
5A4 or D5F3 antibodies, the current recommendation is 
that confirmation by a second technique is not mandatory 
[22]. However, it is advisable to do so in cases that are 
inconclusive. This diagnostic redundancy is also help-
ful if unusual FISH patterns are found [31]. The meth-
ods based on NGS and RNA-assays are highly specific 
and there are numerous studies that demonstrate their 
value for detecting fusions in patients who show negative 
results with other techniques [32, 33].

Lastly, variant testing for specific rearrangements in ALK, 
which has been reported as a crucial element in the clinical 
response to specific inhibitors, does not yet have sufficient 
data for recommendation, although it could be useful in the 
future [34].

ROS1

The c-ros oncogene 1 (ROS1) gene encodes a receptor with 
tyrosine kinase activity that appears to be translocated in 
approximately 1% of NSCLCs, especially in young, non-
smoking patients. It is associated with adenocarcinoma his-
tology, with the presence of a solid component and signet-
ring cells. This histological profile is also typical of tumours 
harbouring an ALK translocation. In fact, both receptors have 
a 77% similarity in their ATP-binding domain.

Crizotinib is approved as a first- or second-line monother-
apy in stage IV lung cancer patients with ROS1 rearrange-
ment [35–37]. Other drugs, such as ceritinib, brigatinib, 
lorlatinib and entrectinib, are being studied but they are not 
approved for this indication yet.

Recommendations:

• It is currently recommended to carry out ROS1 testing 
in patients with advanced stage (IIIB-IV) lung adeno-
carcinoma, regardless of its clinical characteristics [17] 
(Fig. 1). ROS1 testing is not recommended in squamous 
cell carcinoma, except in the context of patients with 
no or low tobacco exposure [17, 22].Essentially, there 
are three methodological approaches to detecting ROS1 
rearrangements: (a) IHC; (b) cytogenetic techniques, 
particularly FISH; and (c) molecular techniques, such as 
reverse transcription PCR (RT-PCR) or NGS [30, 38]. 
To determine ROS1 translocation in clinical specimens, 
international guidelines recommend IHC as the screening 
method and confirmation of positive cases with another 
orthogonal method (cytogenetic or molecular) [22]. Cur-
rently there is no FDA-approved IHC assay for clinical 
routine, but there are two commercially available anti-
bodies (D4D6, Cell Signalling Technology and SP384, 
Ventana Medical Systems) which show high sensitivity 
in most studies when compared to other techniques, in 
particular FISH or RT-PCR [22, 39]. However, accord-
ing to the method and the criteria for positivity used, the 
specificity ranges from 70 to 100% [22, 39]. At present, 
there is no universally accepted system for how to score 
IHC results but it is recommended that the specimen 
includes at least 20 tumour cells and that each laboratory 
validates its own interpretation range [22, 24, 38, 40]. 
Moreover, it is important to consider that ROS1 expres-
sion without underlying rearrangement (false positives) 
has been described in nearly a third of tumours [41, 42]. 
The presence of other molecular abnormalities, such as 
EGFR, KRAS, BRAF or HER2 mutations and ALK rear-
rangements, has also been identified in some of these 
tumours [43].

• Regarding FISH, usually considered as the gold-standard 
technique, the use of a dual-colour break-apart probes 
and a count of at least 50 tumour cells is recommended 
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[22, 38–40]. A tumour should be considered positive 
when at least 50% of tumour cells have break-apart sig-
nals (separated by ≥ 1 signal diameter), and/or 3’ isolated 
signals (frequently marked with green fluorochrome) 
[38, 39]. False positives and false negatives have been 
described, attributable to both methodological and bio-
logical causes [38, 40]. In respect of this latter aspect, it 
is important to note that some commercial probes could 
not detect rearrangements due to their design, as is the 
case for the variant GOPC-ROS1 [38, 44].

• Regarding RT-PCR and NGS (DNA or RNA-based), 
most published studies show high sensitivity and speci-
ficity data [33, 44, 45].

BRAF

BRAF mutations can be found in approximately 2% of lung 
carcinomas, both in smokers and non-smokers. Most of these 
are adenocarcinomas and tumours with papillary growth 
(Fig. 1) [46, 47]. Nearly all studies find a 50% frequency for 
BRAF V600E mutations [48], although in a European study 
the frequency is as high as 83% [49]. Additionally, BRAF 
V600E mutations are mostly mutually exclusive with most 
druggable abnormalities present in this tumour [46, 50]. It 
should be noted that certain BRAF mutations can co-exist 
with KRAS mutations [50]. Following robust results from 
clinical studies with BRAF inhibitors, whether or not asso-
ciated with MEK inhibitors, both the EMA and FDA have 
approved dabrafenib and trametinib treatment for patients 
with the V600E mutation [51].

Recommendations:

• It is currently recommended to study the BRAF V600 
mutation in all patients with advanced non-squamous 
NSCLC (Fig. 1) [17, 22]

• The BRAF test can be conducted with any PCR method, 
including NGS, but the methodology should always ana-
lyse exons 11 and 15 [46]. Along this lines, the FDA has 
included the panel Oncomine Dx Target  Test® (Ther-
moFisher, Mass, USA) in its approval [52].

PD‑L1

In randomised studies, immunotherapy with PD-1/PD-L1 
(nivolumab, pembrolizumab, atezolizumab and dur-
valumab) and CTLA4 inhibitors (ipilimumab in combina-
tion with nivolumab) is shown to be effective in patients 
with advanced NSCLC [17]. PD-L1 is a type-1 transmem-
brane protein (B7-H1) that belongs to the B7 ligand fam-
ily, which can be expressed both by haematopoietic cells 
(lymphocytes) and non-haematopoietic cells (tumour cells) 
[53]. In advanced NSCLC, overexpression of PD-L1 is pre-
dictive of clinical benefit with PD-1/PD-L1 inhibitor drugs. 

In metastatic disease, and as a first-line palliative therapy, it 
is clearly predictive of efficacy for monotherapy with pem-
brolizumab when PD-L1 ≥ 50% [54, 55]. In some studies, it 
is also predictive of efficacy for the combination of PD-1/
PD-L1 inhibitors with chemotherapy [56, 57]. In pre-treated 
patients with advanced NSCLC, overexpression of PD-L1 is 
also predictive of efficacy with nivolumab, pembrolizumab 
and atezolizumab [17]. In general, there is a correlation 
between positive testing for the biomarker and efficacy, 
although this is a marker with a suboptimal negative pre-
dictive value [58].

The standard treatment of unresectable stage III NSCLC 
changed due to the positive results in terms of PFS and OS 
of the PACIFIC study [59]. This phase III double-blind, pla-
cebo-controlled trial randomized PD-L1 unselected patients 
with stage III, locally advanced, unresectable NSCLC who 
did not progressed after chemoradiotherapy in a 2:1 ratio to 
receive durvalumab or placebo every to 2 weeks for up to 
12 months. PACIFIC allowed any level of PD-L1 expression 
and tumour tissue collection was not required. Nevertheless, 
the European Medicines Agency restricted the approval of 
durvalumab to treat patients with PD-L1 ≥ 1% tumour cell 
expression based on a post hoc exploratory analysis. Due 
to this, the determination of PDL1 status is now mandatory 
in unresectable stage III patients suitable to receive dur-
valumab once completed concurrent chemoradiotherapy in 
the absence of progressive disease.

Recommendations:

• PD-L1 expression by IHC is currently accepted as the 
only validated biomarker for anti-PD-1/PD-L1 therapy 
in unresectable locally advanced (based on a controver-
sial EMA decision) and advanced NSCLC [60]. Thus, in 
clinical practice, it should always be part of the diagnosis 
algorithm in order to select the best treatment option.

• Evidence for the presence of the PD-L1 protein can be 
obtained in formalin-fixed paraffin-embedded tissue 
specimens. Regarding preanalytical conditions, the most 
critical step is an enough time of fixation (i.e. at least 
6 h), but storage time could also be relevant (i.e. archival 
material fewer than 3 years is recommended) [61].

• PD-L1 is expressed at the membrane level, while intra-
cytoplasmic expression is less frequent (not considered 
a positive result) and it is observed in tumour and/or 
immune cells.

• There are several PD-L1 clones available for IHC test-
ing. The four most widely used in pathology labs are 
22C3 and 28–8 by Agilent/Dako, which share the Auto-
stainer LINK 48 diagnostic platform by Dako, SP263 by 
MedImmune/Ventana and SP142 by Spring/Bioscience/
Ventana, which share the Ventana BenchMark diagnos-
tic platform. For routine diagnostics, the most frequently 
used clones are any of the first three, since these have 
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shown good expression correlation between them in 
several studies. With respect to the other clones, SP142 
stains a lower proportion of tumour cells [62].

• With these four clones, a positive result for PD-L1 is 
evaluated according to the percentage expression in 
tumour cells (partial or full membrane expression) at any 
intensity. With SP142, the proportion of the tumoral area 
occupied by immune cells is also evaluated [61].

• In small biopsies, at least 50–100 viable cells should be 
tested in order to validate the test result.

• At present, this can also be conducted with cytology [11, 
63], but there is no study available to date that establishes 
a relationship with treatment response despite the good 
correlation observed between direct smears or cell blocks 
with biopsies [11].

• Since indications change rapidly, it seems reasonable to 
recommend including all the quantifiable information 
(percentage of positive tumour cells and percentage of 
positive immune cells) in every report, and not only the 
qualitative value (positive vs. negative).

Which other biomarkers in NSCLC are 
currently of interest?

Table 2 summarises other biomarkers to be performed on 
tissue- and/or cytology-type samples from advanced NSCLC 
patients, including its predictive alteration and the method 
for testing.

HER2

The presence of HER2 abnormalities in advanced NSCLC 
patients can also be ancillary to targeted therapy, but the 
data to date is controversial, both from the clinical viewpoint 
and from the biomarker perspective. Two main deregulation 
mechanisms have been described that are mutually exclusive 

with other oncogenic abnormalities: (a) mutations of which 
90% are in the kinase domain (exon 20), the most frequent 
being p.A775_G776insYVMA insertion, especially in ade-
nocarcinomas, with an approximate frequency of 3% [64]; 
and (b) amplification/overexpression that occurs in a simi-
lar percentage of, and can overlap with mutations in 11% 
of cases [65]. HER2 mutations seem to be the best clinical 
benefit predictors [65]. It also should be noted that squa-
mous cell lung carcinomas can present HER2 mutations, but 
outside the kinase domain, with certain clinical benefit data 
when treating with afatinib [66]. As a summary, the follow-
ing points can be useful:

• As an isolated biomarker, HER2 IHC may not be suffi-
cient to select patients who can benefit from anti-HER2 
therapies [67, 68];

• HER2 mutations identified by NGS could give access to 
investigational targeted drugs in clinical trials [69];

• HER2 amplification has been described as a resistance 
mechanism after therapy with EGFR-TKIs and also as a 
“de novo” alteration in pan-negative adenocarcinomas 
[16, 70].

MET

The MET gene encodes a tyrosine kinase receptor activated 
by its specific natural ligand: the hepatocyte growth fac-
tor receptor (HGFR). MET amplification (3–7%), as well as 
overexpression (25–75%), implies a worse prognosis for the 
patient, with the cut-off point with predictive value in dis-
pute. Ten to twenty percent of patients with EGFR-mutated 
tumours acquire EGFR-TKI resistance through MET ampli-
fication, and the therapeutic implications of this are being 
explored [16]. Moreover, MET exon 14 (METex14) muta-
tions are identified in approximately 3% of NSCLC cases. 
These are frequently concomitant with gene amplification, 
and present specific clinicopathological features (e.g. elderly 
patients, sarcomatoid histology or adenocarcinoma) [71, 72]. 
These mutations are predictive of benefit with specific MET-
TKIs (crizotinib, tepotinib or capmatinib) [72, 73]. The 
preferred technique should be NGS. Sanger sequencing can 
detect METex14, but large deletions or low allelic frequency 
can hinder sensitivity. Quantitative RT-PCR (qRT-PCR), a 
method based on messenger RNA (mRNA), is sensitive 
and specific; therefore, it can be appropriate for selecting 
METex14 as a single gene test.

RET

Two main activation mechanisms have been described for 
the oncogenic kinase RET: point mutations and genetic rear-
rangements. Activating point mutations are most common 
in medullary thyroid cancer. RET fusions are observed in 

Table 2  Other biomarkers of interest in NSCLC patients

FISH fluorescence in situ hybridisation, IHC immunohistochemistry, 
NGS next-generation sequencing, NSCLC non-small-cell lung cancer, 
PCR polymerase chain reaction, TMB tumour mutation burden
*Measurement of somatic mutations present in tumour cells

Gene Predictive alteration Methodology (in tissue)

HER2 Mutation PCR: sanger, real-time PCR and NGS
Amplification FISH, NGS, real-time PCR

MET Mutation NGS
Amplification FISH, NGS, real-time PCR

RET Rearrangement FISH and NGS
NTRK Rearrangement IHC (screening) and NGS
TMB Mutations* NGS
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10% of papillary thyroid cancers, 1–2% of NSCLC cases and 
other cancer subtypes, including colorectal, pancreatic and 
breast cancers [74]. In NSCLC, RET fusion presents mainly 
in adenocarcinomas of non-smoker patients, and the partner 
that is most frequently associated in this setting is KIF5B. In 
lung adenocarcinoma, the presence of calcifications in the 
form of psammoma bodies could be indicative of the pos-
sibility of finding this alteration [75]. Some multiple TKIs 
have shown activity in NSCLC with RET fusion, as well as 
in other cancer types. Recently, two molecules especially 
designed as strong and selective inhibitors, BLU-667 and 
LOXO 292, have shown promising activity in RET-positive 
NSCLCs, as well as in other tumours with RET mutations or 
rearrangements [74, 76]. NGS-based panels, including RET, 
may be more suitable than PCR-based diagnostic methods, 
as the former can detect abnormalities in multiple genes 
simultaneously. The FISH technique is also a valid alterna-
tive in this scenario [74, 77].

NTRK

The tropomyosin receptor kinase family is encoded by three 
genes (NTRK1, NTRK2 and NTRK3), and its activation by 
rearrangement is targetable. Several drugs are the subject of 
clinical trials, and at least two of them are approved or in the 
process of approval: larotrectinib (LOXO-101, a selective 
inhibitor) and entrectinib (also a ROS1 and ALK inhibitor) 
[78]. There is a very small proportion of lung carcinoma 
patients (especially with adenocarcinomas) that present rear-
rangements in NTRK1, NTRK2 or NTRK3 [79]. Although 
early studies showed higher percentages, recent publications 
suggest a prevalence of less than 1% [78]. It is worth stating 
that these three abnormalities are mutually exclusive and 
that they are not present together with the main targetable 
abnormalities in lung adenocarcinomas [70, 78]. Two strate-
gies are recommended for detecting these abnormalities: (a) 
NGS with a panel that includes testing for the three genes 
and with mandatory RNA testing to avoid false negatives; 
(b) IHC screening, with subsequent confirmation of every 
positive result by FISH or NGS [80, 81]. The IHC assay 
should be used according to the recently released ESMO 
recommendations [81].

TMB

The tumour mutation burden (TMB), also known as muta-
tion load, is an independent biomarker for immunotherapy 
in many types of tumours including lung cancer [82, 83]. 
TMB refers to the number of somatic mutations present in 
the tumour, after eliminating polymorphisms and germline 
mutations from all variants expressed per megabase (MB) 
in the studied exome. The mutations acquired by tumour 
cells can be reflected as an abnormal protein structure, and 

consequently, in the expression of neoantigens that can 
be related to the immunotherapy response. With regard to 
testing, targeted NGS is considered to be a good alterna-
tive to more complex massive sequencing [84]. Although 
this biomarker is not yet validated for clinical practice, it 
may be helpful in selecting patients for immunotheraphy as 
NSCLCs with a high mutation burden are more sensitive to 
these treatments [83]. Furthermore, there are implementa-
tion difficulties due to the tissue requirements, the definition 
of TMB, the need for validating interconnectivity between 
different NGS studies, with the heterogeneity of the numbers 
of included genes, horizontal coverage, the required optimal 
depth, and the chemical sequencing type, etc. and also, and 
more importantly, because the algorithms are continuously 
developing [84]. If eventually drugs are approved based on 
TMB cut-offs, the harmonization efforts underway could be 
very useful [84].

Other biomarkers

The KRAS gene appears to be mutated in about 20% of all 
cases of NSCLC, especially in adenocarcinomas and smok-
ers. Although its prognostic value has not been clearly 
demonstrated, it is the most common oncogenic mutation 
in lung cancer. In fact, many treatment strategies (such 
as the farnesyl transferase inhibitors, MEK and CDK4/6) 
have failed in this context [85]. For this reason, KRAS test-
ing is currently not indicated as an individual test but it is 
appropriate that the study of the KRAS gene is included in 
extended panels [21, 22].

With regards to other potential biomarkers predictive of 
an immune response, the microsatellite instability and the 
immune microenvironment study should be highlighted, 
from the viewpoint of RNA expression and tissue determi-
nation of multiple immune cells [17, 58, 86, 87].

How to prioritise the use of biological 
specimens for an accurate diagnosis

Most previous recommendations regarding sample prioriti-
sation and its preservation for multiple biomarkers testing 
in advanced NSCLC patients are still valid [1, 13]. How-
ever, there are several new aspects that require an update on 
sample-sparing procedures [22, 24, 40].

Regarding histological diagnosis, it is still advisable to 
use the smallest amount of tissue for tumour typing, with a 
reasonable use of classificatory IHC [88]. This means using 
no more than two markers (i.e. TTF1 and p40) in cases 
without any clear morphological differentiation. It is worth 
noting that a different degree of TTF1 positivity has been 
described for adenocarcinomas, depending on the clone used 
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(for example, the 8G7G3/1 antibody shows higher specificity 
and lower sensitivity than other clones) [89].

Regarding the testing of both molecular and immune 
biomarkers (see previous sections), it is still important 
to remember two principles: (a) the fewer times paraffin-
embedded material (tissue or cytological as cell blocks) is 
placed in a microtome, the more will be spared; and (b) the 
order of biomarker prioritisation is important, as the tissue 
can be depleted [13]. To meet at least the first principle, test-
ing should be always planned in advance for every NSCLC 
patient.

Regarding the molecular biomarkers to be analysed, 
apart from EGFR mutations and ALK translocations, it 
is currently mandatory to include testing for ROS1 rear-
rangements and BRAF mutations [17, 24]. The study of 
biomarkers such as MET, RET, HER2, NTRK and KRAS 
as individual tests is currently not indicated, but instead 
it is advised to include these biomarkers in extended pan-
els performed either initially in all advanced NSCLCs or 
when previous EGFR/ALK/ROS1/BRAF testing is negative 

[17, 24]. The recommended protocol to follow is shown in 
Fig. 2, which includes the new biomarkers, detailing the 
recommended techniques and showing the two alterna-
tive pathways. Both routes are equally valid but upfront 
NGS could be a more cost/effective approach [90]. An 
aspect that undoubtedly improves overall quality is to use 
validated tests and to take part in quality control programs 
(see below).

One issue under discussion and without reference in inter-
national guidelines is how to incorporate immune biomark-
ers. The proposed sequence of previous steps includes one 
slice (or two) for PD-L1, together with the slides needed 
for ALK and ROS1, or before nucleic acids extraction [61].

Other issue being debated is whether the biomarkers 
should be reflex tested (by the pathologist at diagnosis) or in 
response to the clinical request. Ideally, this should be done 
as reflex testing so the pathologist can prioritise the sample, 
avoid the need to review preparations when the molecular 
tests are requested, and minimise response time, although 
this is not always possible [91, 92].

Fig. 2  Protocol for multiple biomarker testing on samples from 
patients with advanced NSCLC. The number of sections for each test 
is shown in blue. aThe requirements for nucleic acid extraction for 
individual molecular testing or for extended genetic panels (NGS) are 
variable. AC adenocarcinoma, EGFR epidermal growth factor recep-
tor, FISH fluorescence in situ hybridisation, H&E haematoxylin and 

eosin, IHC immunohistochemistry, NGS next-generation sequenc-
ing, NSCLC-NOS non-small-cell lung carcinoma – not otherwise 
specified, PCR polymerase chain reaction, PD-L1 programmed death 
ligand-1 (Adapted protocol from international guidelines ASCO/
CAP, ESMO and NCCN [17, 22, 24, 40]. Figure modified from 
Conde et al. (confidential, submitted))
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The whole concept of sample prioritization and multi-
disciplinary coordination should be organized through a 
molecular tumour board [93].

The role of NGS in NSCLC

Following the discovery of new low-frequency abnor-
malities, there is an increased need for multigene testing, 
as opposed to single approaches. Testing should include 
RET, HER2, NTRK, KRAS and MET for cases in which the 
usual oncogenic drivers (EGFR, ALK, ROS1 and BRAF) 
give a negative result and whenever an adequate tech-
nique is available [24]. The advantage of ultrasequencing 
and transcriptome analysis is the possibility of conducting 
mass screening without any loss of sensitivity and speci-
ficity, reducing the use of minimal biological specimens.

The development of this technique results in three cat-
egories for biomarker classification: (a) key biomarkers 
that should be tested to identify patients who are to be 
treated with approved therapies; (b) additional biomark-
ers that are desirable for identifying those patients who 
can benefit from clinical trials; and (c) other biomarkers 
that, at present, are only used in research and are not used 
in clinical practice (exome, genome, transcriptome) [22].

Biomarkers can be tested simultaneously with NGS. 
This technique is capable of detecting not only point 
mutations or insertions/deletions (indels) but also rear-
rangements and copy number variations, as well as a 
wide range of structural variants [30]. As mentioned pre-
viously, NGS appears to be a optimal technique for TMB 
testing [84].

The fact that most available specimens in routine 
healthcare are fixed in formalin and embedded in paraf-
fin, and that double testing for DNA and RNA is neces-
sary, is decisive when considering whether a technique is 
ideal for clinical use. Additionally, the specimens most 
commonly available for lung cancer have a low tumour 
cell content. In fact, most recommended techniques are 
those that are capable of detecting molecular abnormali-
ties in samples with at least 20–30% of cancer cells [24].

There are studies that show very good concordance 
data between different technical solutions based on par-
affin-embedded tissue. All these procedures urgently 
require quality control on the pre-test fixation parameters, 
as well as control of tumour cellularity and quality con-
trol for the nucleic acids [94]. Although there are advan-
tages and limitations associated with amplicon-based and 
hybrid capture solutions, the most important thing to keep 
in mind is the need to use RNA when looking for drug-
gable fusions to avoid a significant risk of false negatives 
[95].

The role of liquid biopsy in NSCLC

Tumour biopsies are often insufficient for molecular study 
or are impossible to obtain. This is why liquid biopsies 
have been proposed as an alternative. It has many advan-
tages, as it is a minimally invasive technique that can be 
used at diagnosis or during follow-up. [96, 97]. Circulating 
tumour cells (CTCs), circulating tumour DNA (ctDNA), 
circulating exosomes, platelet RNA, and circulating 
tumour RNA (ctRNA) are included in the definition of 
liquid biopsy. ctDNA represents the whole genomic pic-
ture of the tumour and is used in current clinical practice 
for liquid biopsies to test for genetic and epigenetic abnor-
malities specific to the tumour [14]. It can be detected in 
blood and also in urine, pleural fluids and saliva, among 
others [98].

Test methods for ctDNA can have a high specificity 
[14]. Therefore, when a mutation is detected in a clinical 
setting, it can be used to determine a targeted therapy. 
Since levels of ctDNA vary significantly and can be as low 
as 0.01% of all cfDNA, detection techniques must have a 
high sensitivity in order to detect the DNA from tumour 
cells, from 15 to 0.01% being the most widely used [98]. 
These techniques include ARMS (amplification refrac-
tory mutation system) PCR, qPCR, digital PCR (dPCR), 
BEAMing (beads, emulsions, amplification and magnet-
ics) and the recommended NGS technique when ALK and 
ROS1 fusions are to be tested.

From a clinical perspective, these methods offer alterna-
tive diagnostic techniques when a tissue biopsy is insuf-
ficient or not viable to determine EGFR T790M resistance 
mutation in NSCLC patients who harbour EGFR muta-
tions, and also when the disease progresses. Nevertheless, 
a negative result with liquid biopsy requires testing with 
conventional techniques, such as tumour biopsy. Although 
validation and clinical usefulness are not sufficiently deter-
mined as yet, this is a promising technique for diagnosing 
other molecular abnormalities and their resistance mech-
anisms. It offers different possible applications, such as 
response monitoring, tumour recurrence detection, deter-
mination of residual disease after full tumour resection, 
early detection of lung cancer and for immuno-oncology 
[14].

Main requirements for implementing 
optimal quality control

Quality test control is important, necessary and should 
be incorporated into the quality plan of the laboratory or 
service conducting the tests. In Spain, it is recommended 
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that the lab has an ISO 9001 certification, and also that 
the different tests be accredited by the UNE-EN ISO15189 
standard that has started to be enforced by pathology and 
molecular laboratories and evaluated by the Spanish 
National Certification Entity (ENAC).

The roadmap of processes and quality indices should 
include (a) the staff involved (technicians, biologists, pathol-
ogists etc.) and their training, experience and standard oper-
ating procedures; (b) instrumentation, with CE certifications 

for use and maintenance; and (c) reagents. For more infor-
mation, the SEAP [99], CAP [22], and Association of Direc-
tors of Anatomic and Surgical Pathology (ADASP) recom-
mendations can be reviewed [100].

As a summary outline, the controls for every test can be: 
(a) internal, such as positive and negative controls associ-
ated with each test; (b) external, such as quality control 
schemes (SEAP, EMQN, UK-NEQAS) (Table 3); and (c) 
results control, to verify that the percentage of mutations 

Table 3  Examples of european quality assurance shemes

cfDNA cell-free DNA, EGFR epidermal growth factor receptor, FFPE formalin-fixed paraffin-embedded, FISH fluorescence in situ hybridisa-
tion, IHC immunohistochemistry, NGS next-generation sequencing, PD-L1 programmed death ligand-1, TMA tissue microarrays

Supplier Name Starting material Aim Format

EMQN Molecular testing of cfDNA 
in plasma for EGFR gene 
mutations (pilot)

Plasma containing cfDNA Mutations in the EGFR gene Five mock clinical cases with 
matching samples

Molecular testing in lung 
cancer

Mix of real tissue and artifi-
cial FFPE materials

Mutations in the EGFR, 
PIK3CA, KRAS and BRAF 
genes

Ten mock clinical cases with 
matching samples

DNA Sequencing–NGS 
(vSomatic)

DNA sample derived from 
FFPE material

Any NGS strategy can be used One mock clinical case with 
matching samples

Oncogene panel testing Rolled sections of FFPE 
materials 

Mutations in the EGFR, 
PIK3CA, KRAS, HRAS, 
NRAS, KIT, TP53 and BRAF 
genes

Three mock clinical cases with 
matching samples

ESP ALK FISH Slides ALK rearrangements Five resections, five digital 
cases

ALK IHC Slides ALK rearrangements Five resections
EGFR, KRAS (optional), 

BRAF (optional)
Slides/rolled sections Mutations Ten resection specimens, pos-

sible cell-line
ROS1 fish Slides ROS1 rearrangements Five resections or possibly cell-

lines, five digital cases
ROS1 IHC Slides ROS1 rearrangements Five resections or possibly 

cell-lines
PD-L1 Slides PD-L1 overexpression Eight resections (TMAs) and 

four digital cases
MET EQA scheme (ex 14 

skipping) for DNA and RNA
Slides/rolled sections MET exon 14 mutations Five resections

NordiQC Companion PD-L1 Slides PD-L1 overexpression One preparation with multiple 
cases and one in-house case

SEAP ALKanza MODULE Slides ALK rearrangements One slide with four cases + one 
in house

EGFR Slides/rolled sections EGFR mutations Four consecutive slides
UKNQEQAS NSLCC ALK IHC Slides ALK and ROS1 rearrange-

ments
One slide with several 

cases + one in house
NSLCC ALK/ROS1 FISH 

(pilot)
Slides ALK and ROS1 rearrange-

ments
One slide with several 

cases + one in house
NSLCC PD-L1 IHC (pilot) Slides PD-L1 overexpression One slide with several 

cases + one in house
Gen QA Lung cancer Slides/rolled sections EGFR, ALK (optional), KRAS 

(optional), BRAF (optional)
5–4 cases

Circulating tumour DNA 
(pilot)

Plasma EGFR mutations Five cases

Additional lung cancer bio-
markers

Slides/rolled sections ROS1, RET and MET (ampli-
fication)

Four cases
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found corresponds to the frequency described depending on 
the type of tested samples. To facilitate this last control, it is 
advised to take part in case registration programs set up in 
collaboration with SEAP (Lungpath or ALKanza) in order 
to compare results with those obtained in similar hospitals.

The most frequent quality indices are: (a) response time, 
with around 7–10 working days recommended, on the under-
standing that this refers to having all biomarker results avail-
able within this time frame, both from individual tests and 
targeted NGS; (b) results from previously described quality 
controls; and (c) discrepancy/error analysis. Therefore, the 
creation of multidisciplinary committees for analysing the 
molecular diagnoses will facilitate the establishment of these 
indices. Table 4 specifies the information that should be con-
tained in the results report for any biomarker test.

Conclusions

The mandatory tests for every patient with advanced NSCLC 
are EGFR and BRAF mutations, ALK and ROS1 rearrange-
ments [17, 24, 40], and PD-L1 expression [17, 40]. However, 
the growing need to study emerging biomarkers (HER2, 
MET, RET, NTRK and TMB) warrants the establishment 
of a routine and more comprehensive molecular assessment 
with targeted NGS. The coordination between all profession-
als and prioritisation of the proper tests and technologies 
for each case remains a challenge. Thus, adequate multi-
disciplinary communication is essential in order to provide 

the information within the required time frame, with the 
required quality and at a reasonable cost.
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Table 4  Proposed pathology results report

Identification of the patient and the doctor who ordered the test (or, failing that, the authorised person)
Pathological diagnosis
Type of specimen submitted:
  Previous treatment (yes/no)
  Time of biopsy (initial/relapse/progression)
  Date on which the specimen was collected
The external code in the case of referral centres
The medium in which the specimen was received (fresh, frozen, paraffin-embedded, etc.)
The anatomical origin of the specimen
The order date, the specimen receipt date and the date on which the results were issued
The biomarker test method used, specifying detectable mutations and/or other abnormalities. In the case of commercial kits, the commercial 

name, the batch number and whether they are an approved ‘in vitro diagnostics’ product should be stated
The quality of the sample, specifying the percentage of cancer cells and whether the sample was enriched by micro- or macrodissection, as well 

as DNA concentration and purity
Comments about the adequate or inadequate nature of the sample
The test result, defining the type of molecular abnormality detected or the absence of molecular abnormalities
Identification of the professional responsible for the test (all phases)
Identification of the laboratory supervisor (optional)
Any additional information or comments of interest to the doctor who ordered the test
Accreditation or participation in quality programs
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